Indian Statistical Institute, Bangalore Centre B.Math. (I Year) : 2012-2013 Semester II : Semestral Examination Probability Theory II

08.05.2013 Time: 3 hours. Maximum Marks : 100

Note: The paper carries 105 marks. Any score above 100 will be taken as 100. State clearly the results you are using in your answers.

- 1. (15 marks) Two friends agree to meet at a certain place between 12 noon and 1 p.m., with the first to reach agreeing to wait for the other person. Assume that their arrival times are independent, each having a uniform distribution over the assigned time interval. Let W denote the waiting time for the person reaching first. Find the probability density function of W.
- 2. (20 marks) Let U, W be independent random variables each having N(1,1) distribution. Let X = U 2W, Y = U + 2W. For any fixed $x \in \mathbb{R}$, find the conditional probability density function of Y given X = x. (Indicate clearly the family to which the conditional distribution belongs, mentioning explicitly all the relevant parameters.)
- 3. (10 + 10 + 10 = 30 marks) (i) Let U_1, \dots, U_n be i.i.d. random variables with common probability density function $f(\cdot)$. Derive the probability density function of the corresponding order statistics (X_1, \dots, X_n) .

(ii) In (i) above suppose $U_i, 1 \le i \le n$ have an exponential distribution with parameter λ . Define $Z_1 = X_1, Z_2 = X_2 - X_1, \dots, Z_n = X_n - X_{n-1}$, where $X_i, 1 \le i \le n$ are as in (i). Find the probability density function of (Z_1, \dots, Z_n) .

(iii) With notation and assumptions as in (ii) above, find the marginal distributions of $Z_k, 1 \le k \le n$. Are they independent?

4. (20 marks) Let $\{p_n\}$ be a sequence of numbers in (0,1) such that $\lim_{n\to\infty} np_n = \lambda$, where $\lambda > 0$. For $n = 1, 2, \cdots$ let X_n be a random variable having a binomial distribution with parameters n and p_n ; let F_n denote the distribution function of X_n . Let X be a random variable having a Poisson distribution with parameter λ , with F denoting its distribution function. Using characteristic functions show that $\lim_{n\to\infty} F_n(z) = F(z)$ at every continuity point z of F.

5. (20 marks) Let Y_1, Y_2, \cdots be a sequence of independent random variables each having an exponential distribution with parameter 1. Find

$$\lim_{n \to \infty} P\left(\frac{1}{2}n - \frac{1}{2\sqrt{3}}\sqrt{n} \le \sum_{i=1}^{n} [1 - \exp(-Y_i)] \le \frac{1}{2}n + \frac{1}{2\sqrt{3}}\sqrt{n}\right).$$